Longitudinal flow decorrelations with hydrodynamic fluctuations and nuclear deformation

Koichi Murase YITP, Kyoto Universisty

2022-01-28, RBRC Workshop: Physics Opportunities from the RHIC Isobar Run

Fluctuations in heavy-ion collisions

Final observables

– flow coefficients v_n , etc.

Matter response

EoS, η , ζ , τ_R , etc.

Additional fluctuations

- + hydro fluctuations
- + jets/mini-jets, etc

- nucleon distribution,
- other fluctuations such as subnucleonic structure

QCD critical point search

Search of QCD critical point and 1st order phase transition

Schematic phase diagram of QCD [taken from the 2007 NSAC Long Range Plan]

Dynamical models for *high-energy* collisions (Hydro + cascade + ...)

Needed extensions

- EoS modeling
- critical fluctuations
- dynamical initialization
- dynamical core-corona separation

Dynamical models for *lower-energy* collisions?

Hydrodynamic fluctuations

Thermal fluctuations of fluid fields

spontaneous field fluctuations of fluid fields such as $\pi^{\mu\nu}$, Π , etc. at each t and each x

c.f. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (1959)

Fluctuation-dissipation relation (FDR)

Magnitude of *fluctuations* $\delta \pi$, etc. is determined by *dissipation* η , etc. (and temperature T)

$$\langle \delta \pi^{\mu\nu}(x) \delta \pi^{\alpha\beta}(x') \rangle = 4T \eta \Delta^{\mu\nu\alpha\beta} \delta^{(4)}(x - x')$$

$$\eta \neq 0$$
 $\delta \pi \neq 0$

Longitudinal flow decorrelations

Flow correlation in longitudinal direction

$$r_n(\eta_p^a, \eta_p^b) = \frac{V_{n\Delta}(-\eta_p^a, \eta_p^b)}{V_{n\Delta}(\eta_p^a, \eta_p^b)}$$

 $\sim \langle \cos n[\psi_n(-\eta) - \psi_n(\eta)] \rangle$

Φ₂ Φ₂ η direction

hydro fluctuations play a role

A Sakai, KM, T Hillano, Phys.Rev.C 102 (2020) 6, 064903

Jia and Huo, PRC90 034905 (2014)

The effect of hydrodynamic fluctuations

Without initial longitudinal fluctuations

A Sakai, KM, T Hirano, Phys.Rev.C 102 (2020) 6, 064903

Hydrodynamic fluctuations

Longitudinal decorrelation

0-10%: cutoff $\lambda = 1.0$

10-50%: cutoff $\lambda = 1.5$

Strong background flow → decorrelation weak
Central collisions weaker effects (hydro fluct ~ 1/V∆t)
Peripheral collisions stronger effects

Motivation: Xe-Xe collisions

Always asked: Is there any clear ways to distinguish hydrodynamic fluctuations from other types of fluctuations?

→ Q: Is there any difference between the hydro fluctuations and initial fluctuations to the nuclear deformation?

Setup for the deformation

Woods-Saxon distribution deformed by spherical harmonics with coefficients β_2 & β_4

$$\rho = \frac{\rho_0}{1 + \exp(\frac{r - R(\theta)}{a})}.$$

$$R(\theta) = R_0 [1 + \beta_2 Y_{20}(\theta) + \beta_4 Y_{40}(\theta)]$$
$$Y_{20} \propto 3\cos^2 \theta - 1$$

$$R_0 = 5.42$$
, $a = 0.55$, $\rho_0 = 0.166$

Deformed Xe

¹²⁹Xe

$$\beta_2 = 0.162,$$

 $\beta_4 = -0.003.$

G. Giacolone, et al, Phys. Rev. C 97, 034904 (2018); P. Mller, et al, Atom. Data Nucl. Data Tabl. 199-110, 1 (2016).

Spherical Xe

VS

¹²⁹Xe

 $\beta_2 = 0.0$ $\beta_4 = 0.0$

Integrated dynamical model

5. Observables: v_n , r_n , etc.

2. (3+1)-dim. Relativistic Fluctuating Hydrodynamics

EoS: lattice QCD & HRG, $\eta/s = 1/4\pi$

1. Initial condition

MC-Glauber/modified BGK

T. Hirano, P. Huovinen, KM, Y. Nara, Prog. Part. Nucl. Phys. 70 (2013) 108;

KM, T. Hirano, Nucl. Phys. A956 (2016) 276

Longitudinal flow decorrelation (n=2)

purely caused by hydrodynamic fluctuations (cutoff $\lambda = 2.0$ fm)

Effect of deformation

Longitudinal flow decorrelation (n=3)

purely caused by hydrodynamic fluctuations (cutoff $\lambda = 2.0$ fm)

No clear tendencies as the *n*=2 case at the central collisions

Longitudinal flow decorrelation (n=4)

purely caused by hydrodynamic fluctuations (cutoff $\lambda = 2.0$ fm)

No clear tendencies as the *n*=2 case at the central collisions

Some structures? needs statistics

Longitudinal flow decorrelation (n=4)

purely caused by hydrodynamic fluctuations (cutoff $\lambda = 2.0$ fm)

No clear tendencies as the *n*=2 case at the central collisions

Some structures? needs statistics

Slope parameter F_n

$$r_n = 1 - 2 F_n \eta_a$$

Xe Xe 5.44 TeV

The effect of hydrodynamic fluctuations has differences by the deformation in central collisions

Slope parameter F_n

$$r_n = 1 - 2 F_n \eta_a$$

No strong tendencies for n=3,4

<u>Summary</u>

- ✓ Hydrodynamic fluctuations are thermal fluctuations of fluid dynamics
- ✓ They affect the dynamics through the noise term in hydro eqs.

The effect of the hydrodynamic fluctuations to the longitudinal decorrelation actually depends on the initial geometry.

- Larger initial anisotropy stabilizes the event plane so that the decorrelations by hydrodynamic fluctuations are suppressed just the same as that by initial fluctuations.
- First attempt of calculating Xe-Xe 5.44 TeV collisions with hydrodynamic fluctuations in a dynamical model.
 Compared the deformed Xe and spherical Xe results.
 - → The decorrelation is weaker with deformed Xe in central collisions with larger v₂
- Qualitatively similar with other longitudinal fluctuations:
 Needs more statistics/analysis for quantitative discussion